Content about Frommer Lab

December 21, 2011

Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world’s most efficient mining companies. Roots live in darkness and direct the activities of the other organs, as well as interact with the surrounding environment. Charles Darwin posited in The Power of Movement of Plants that the root system acts as a plant’s brain. Due to the difficulty of accessing root tissue in intact live plants, research of these hidden parts has always lagged behind research on the more visible parts of plants. But now: a new technology--developed jointly by Carnegie and Stanford University--could revolutionize root research.

Stanford, CA— Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world’s most efficient mining companies. Roots live in darkness and direct the activities of the other organs, as well as interact with the surrounding environment. Charles Darwin posited in The Power of Movement of Plants that the root system acts as a plant’s brain.

December 8, 2011

Food prices are soaring at the same time as the Earth’s population is nearing 9 billion. As a result the need for increased crop yields is extremely important. New research led by Carnegie’s Wolf Frommer into the system by which sugars are moved throughout a plant—from the leaves to the harvested portions and elsewhere—could be crucial for addressing this problem. Their work is published December 8 by Science Express.

 

November 25, 2010

Sugars serve as the major bioenergy currency exchanged between cells in both plants and humans. We did not know how cells export sugars from those cells that acquire or produce the sugars to supply the rest of the organism with bioenergy. This work identified a novel class of sugar transporters from plants an animals. The plant proteins are essential for pathogenicity of blight bacteria in rice. 

March 22, 2010

Audio Press Release
To engineer better crops and develop new drugs to combat disease, scientists look at how the sensor-laden membranes surrounding cells interact with their environment. But remarkably little is known about how proteins interact with these protective structures. For the first time for any multicellular organism, Carnegie researchers have analyzed 3.4 million potential protein/membrane interactions and have found 65,000 unique relationships. Preliminary data are now available to the biological community at www.associomics.org/search.php.