Flowering plants release copious amounts of sperm-carrying pollen to be delivered by wind, insect, or other carriers to waiting females. In some situations, the females are choosy about which pollen grains they allow to fertilize their eggs.  How do these females discriminate between pollen types?

Director Emeritus of Carnegie’s Department of Plant Biology, Winslow Briggs,has been elected an Einstein Professor by the Chinese Academy of Sciences (CAS). The professorship program annually awards 20 distinguished international scientists the honor. The recipients participate in lecture tours throughout China to strengthen international science and technology cooperation and train the next generation of Chinese scientists.

Researchers at the Carnegie Institution for Science, with colleagues at the Nara Institute of Science and Technology, observed for the first time a fundamental process of cellular organization in living plant cells: the birth of microtubules by studying recruitment and activity of individual protein complexes that create the cellular protein network known as the microtubule cytoskeleton—the scaffolding that provides structure and ultimately form and shape to the cell. These fundamental results could be important to agricultural research and are published in the October 10, 2010, early on-line edition of Nature Cell Biology.

The private sector and an Austrian research institute are chipping in to help support one of the most widely used public biological databases in the world. Although the majority of funding continues to come from the National Science Foundation, The Arabidopsis Information Resource (TAIR) database is now receiving support from other organizations as well. Almost 40,000 researchers worldwide use it monthly to study everything from crop engineering and alternative energy sources to human disease. Although Arabidopsis thaliana is an experimental plant, it shares many of its genes and basic biological processes with other species of plants and animals including humans

Audio Press Release
To engineer better crops and develop new drugs to combat disease, scientists look at how the sensor-laden membranes surrounding cells interact with their environment. But remarkably little is known about how proteins interact with these protective structures. For the first time for any multicellular organism, Carnegie researchers have analyzed 3.4 million potential protein/membrane interactions and have found 65,000 unique relationships. Preliminary data are now available to the biological community at

Video Press Release
Scientists, including Plant Biology's Sue Rhee, have created a new computational model that can be used to predict gene function of uncharacterized plant genes with unprecedented speed and accuracy. The network, dubbed AraNet, has over 19,600 genes associated to each other by over 1 million links and can increase the discovery rate of new genes affiliated with a given trait tenfold. It is a huge boost to fundamental plant biology and agricultural research.
Director Emeritus of Carnegie’s Department of Plant Biology, Winslow Briggs, will be awarded the prestigious International Prize for Biology from the Japan Society for the Promotion of Science at a ceremony in Tokyo November 30, held in the presence of His Majesty the Emperor of Japan. Briggs is being honored for his work on light sensing by plants.

Researchers at the Carnegie Institution’s Department of Plant Biology have discovered a key missing link in the so-called signaling pathway for plant steroid hormones (brassinosteroids). Many important signaling pathways are relays of molecules that start at the cell surface and cascade to the nucleus to regulate genes. This discovery marks the first such pathway in plants for which all the steps of the relay have been identified. Since this pathway shares many similarities with pathways in humans, the discovery not only could lead to the genetic engineering of crops with higher yields, but also could be a key to understanding major human diseases such as cancer, diabetes, and Alzheimer’s.

Surprisingly little is known about the interactions that proteins have with each other and the protective membrane that surrounds a cell. These membrane proteins regulate nutrients, sense environmental threats, and are the communications interface between and within cells. Now researchers at Plant Biology have cloned genes to produce membrane proteins that may initiate instructions for genes to turn on in the nucleus. They just donated 2010 of them to the Arabidopsis Biological Resource Center.